Influenza Virus Directly Infects Human Natural Killer Cells and Induces Cell Apoptosis

Huawei Mao, Wenwei Tu, Gang Qin, Helen Ka Wai Law, Sin Fun Sia, Ping-Lung Chan, Yinpeng Liu, Kwok-Tai Lam, Jian Zheng, Malik Peiris, and Yu-Lung Lau

Department of Pediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, People’s Republic of China; Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, People’s Republic of China; and HKU-Pasteur Research Centre, the University of Hong Kong, Hong Kong SAR, People’s Republic of China

Influenza is an acute respiratory viral disease that is transmitted in the first few days of infection. Evasion of host innate immune defenses, including natural killer (NK) cells, is important for the virus’s success as a pathogen of humans and other animals. NK cells encounter influenza viruses within the microenvironment of infected cells and are important for host innate immunity during influenza virus infection. It is therefore important to investigate the direct effects of influenza virus on NK cells. In this study, we demonstrated for the first time that influenza virus directly infects and replicates in primary human NK cells. Viral entry into NK cells was mediated by both clathrin- and caveolin-dependent endocytosis rather than through macropinocytosis and was dependent on the sialic acids on cell surfaces. In addition, influenza virus infection induced a marked apoptosis of NK cells. Our findings suggest that influenza virus can directly target and kill NK cells, a potential novel strategy of influenza virus to evade the NK cell innate immune defense that is likely to facilitate viral transmission and may also contribute to virus pathogenesis.

Received 21 April 2009/Accepted 30 June 2009

Influenza is an acute respiratory virus infection that continues to pose endemic, zoonotic, and pandemic threats to human health, with significant morbidity and mortality (17). At the early phase of viral infection, innate immunity plays important roles in host defense by limiting viral replication and helping to initiate an adaptive immune response. Natural killer (NK) cells are key effector cells in innate immunity and play a critical role in the first line of host defense against acute viral infections by directly destroying infected cells without the need for prior antigen stimulation (7, 20). As influenza illness and virus transmission usually occur in the first few days of infection, the virus has to devise strategies to evade host innate immune responses, including NK cell immunity (15, 21).

NK cells can recognize and kill influenza virus-infected cells (2, 10, 23); to counteract this killing, however, influenza virus has developed an escape strategy that inhibits NK cell cytotoxicity by increasing the binding of two inhibitory receptors to the infected cells after infection (1). The individuals with complete NK cell deficiency developed life-threatening varicella zoster virus and cytomegalovirus infection, but no severe influenza virus infection occurred (30, 40). Indeed, the interaction between human NK cells and influenza virus remains poorly understood. After influenza virus infection, respiratory epithelial cells release inflammatory chemokines that recruit NK cells to the site of infection (12). As a lytic virus, numerous influenza virus particles are released from the infected epithelia and macrophages (5, 9, 33). In the infected microenvironment, NK cells undoubtedly encounter these infective virus particles. It is therefore important to investigate the direct interaction of NK cells with influenza virus. Patients with severe influenza virus infection were shown to have diminished NK cells in peripheral blood and an almost complete absence of pulmonary NK cells, together with marked apoptosis (13, 42). During influenza virus infection in mice, a transient increase of NK cell cytotoxicity is followed by a marked decrease in NK cell activity, with a virus dose-dependent effect (8, 28). These data suggest that influenza virus may directly target NK cells as part of its immunoevasion strategies. However, no reports of the direct effects of influenza virus on human NK cells have so far been available.

In this study, we demonstrated that influenza virus infects and replicates in primary human NK cells. Viral infection was dependent on sialic acids on the cells. The entry was mediated by both clathrin- and caveolin-dependent endocytosis rather than macropinocytosis. Influenza virus infection induced a marked apoptosis of NK cells, which contributed to reduced NK cell cytotoxicity. This, to the best of our knowledge, is the first paper to demonstrate that influenza virus can directly infect NK cells and induce cell apoptosis. These findings suggest that influenza virus may have developed a novel strategy to evade NK cell innate immune defenses, which is likely to facilitate viral transmission and may also contribute to virus pathogenesis.

MATERIALS AND METHODS

Isolation of primary human NK cells. Peripheral blood mononuclear cells were isolated from whole-blood samples obtained from the Hong Kong Red Cross by Ficoll-Hypaque (Pharmacia) gradient centrifugation (44). NK cells were magnetically separated from peripheral blood mononuclear cells with NK
RESULTS

Influenza virus directly infects primary human NK cells. We first determined whether influenza virus could directly infect NK cells. Freshly isolated primary human NK cells were infected with H1N1 virus for 1 h, extensively washed to remove unadsorbed virus, and then cultured for 6 h. Using RT-PCR, we detected the M gene in influenza virus-exposed NK cells but not in mock-treated NK cells (data not shown). In addition, the expression of influenza viral antigens was also detected in the virally exposed NK cells by immunofluorescent staining. In parallel, purified resting primary human T cells, which cannot be directly infected by influenza virus (24), were included as a negative control. After treatment with influenza virus, no positive staining was found in these cells (Fig. 1A). The confocal microscopy further showed the expression of viral antigens in the infected NK cells (Fig. 1B). The attachment and entry of virus into NK cells were confirmed by electron microscopy, which showed that virus particles bound to the cell membrane and within vesicles inside NK cells (Fig. 1C). Using flow cytometry to detect intracellular viral antigen, we found that about 50% of NK cells were infected by H1N1 virus at an MOI of 2 at 6 h postinfection. As a positive control, MDCK cells were similarly treated with influenza virus at an MOI of 2. At 6 h postinfection, all the MDCK cells were infected by the virus (Fig. 1D).

We further examined whether the activated NK cells could be infected by influenza virus. NK cells were activated by recombinant human IL-2 and then treated with H1N1 virus. As shown in Fig. 1E, confocal microscopy with intracellular staining of viral antigens demonstrated that influenza virus also successfully infected IL-2-activated NK cells.

Influenza virus replicates in primary NK cells. After infection, influenza virus could replicate within NK cells. The expression of viral M gene mRNA and NP protein was detected at a series of time points postinfection by quantitative RT-PCR and flow cytometry. The expression of the viral M gene increased from 1 h onwards to peak at 6 h after infection and then decreased (Fig. 2A). In contrast, the expression of viral protein by flow cytometry analysis peaked at 12 h after infection (Fig. 2B). At the same time points, the supernatants from infected NK cells were collected and inoculated onto MDCK cells to determine whether infectious progeny were produced. However, influenza virus infection did not lead to increasing titers of infectious virus in the NK cell supernatants and therefore is abortive in nature (data not shown). We further investigated whether inactivated influenza virus could infect NK cells. The cells were exposed for 1 h to virus inactivated by UV or by heat at 100°C. Upon inactivation by UV, which did not alter viral proteins and fusion activity (3), influenza virus could still bind to NK cells (Fig. 2C). In contrast, the heat treatment at 100°C denatured the hemagglutinin and impaired viral binding to cell surfaces; therefore, the heat (100°C)-inactivated influenza virus did not bind NK cells (Fig. 2C).

Influenza virus infection is dependent on the sialic acids on NK cells. The sialic acid on target cells is now commonly recognized as the receptor for influenza virus infection. Upon
binding to sialic acids on the cell surface, the virus is internalized by receptor-mediated endocytosis. We next determined the role of sialic acid in the influenza virus infection of NK cells by treating cells with serial concentrations of sialidase prior to viral infection, aiming to cleave the sialic acids on NK cells. Six hours after infection, intracellular viral antigen was detected by flow cytometry. As shown in Fig. 3A, the blockade of influenza virus infection by sialidase in NK cells was dose dependent. The frequency of virally infected NK cells decreased by around half at the concentration of 100 mU of sialidase/ml, and almost total blockade of the infection was found when 500 mU of sialidase/ml was applied. Cell viability was not affected by the sialidase treatment, as evidenced by no changes in annexin V binding and PI uptake of the treated NK cells (Fig. 3B). In addition, the treated cells also showed major histocompatibility complex (MHC) class I staining similar to that of mock-treated cells (Fig. 3C). These data suggested that influenza virus infection of NK cells is mediated by sialic acids. In addition, double staining against viral protein and anti-EEA1 was performed after influenza virus infection. Confocal microscopy analysis showed that these two proteins colocalized (Fig. 3D), indicating that influenza virus entered NK cells via endocytosis.

Influenza virus infection of NK cells is mediated by both clathrin- and caveolin-dependent endocytosis but not macropinocytosis. Recent research has demonstrated that numerous viruses employ the following endocytic pathways to infect different cells: clathrin-mediated endocytosis, caveolin-mediated endocytosis, macropinocytosis, and clathrin- and caveolin-independent pathways (6, 26). We thus attempted to identify the endocytic pathway(s) exploited by influenza virus for infecting NK cells. We first examined whether clathrin-mediated endocytosis was involved in infection, because it is the most established route of entry. Double staining of viral antigen and clathrin showed that these two proteins colocalized (Fig. 4A). Flow cytometry analysis further demonstrated that both the frequency of infected cells and the geometric mean fluorescent intensity of viral antigen were significantly decreased by clathrin inhibitor chlorpromazine treatment in a dose-dependent pattern (Fig. 4B). These data indicated that clathrin-dependent endocytosis was exploited by influenza virus to infect NK cells.

We next defined the role of caveolin-mediated endocytosis in an influenza virus infection of NK cells. Nystatin was applied to specifically block this endocytic pathway (18). Similarly to chlorpromazine, nystatin significantly inhibited the viral infection in a dose-dependent way. Decreased frequencies of infected cells and decreased intensity of viral antigen were observed at 6 h postinfection (Fig. 4C), suggesting that caveolin-mediated endocytosis was also involved in the viral infection.

Finally, we examined whether macropinocytosis contributed to influenza virus infection of NK cells. We used cytochalasin D, the most commonly used inhibitor (36), to inhibit this path-
way during influenza virus infection of NK cells. The expression of viral antigen was determined by flow cytometry at 6 h postinfection. Neither the percentage of infected cells nor the intensity of viral antigen was decreased (Fig. 4D), indicating that macropinocytosis was not required for influenza virus entry into NK cells.

**Direct influenza virus infection kills NK cells.** In order to determine the effect of influenza virus infection on NK cell viability, the cells were stained with annexin V and PI at 24 h after infection; annexin V and PI were selected as the markers of early apoptosis and late apoptosis, respectively. As shown in Fig. 5A, the frequencies of both annexin V−PI− and annexin V+PI+ cells were remarkably increased after viral infection. The percentage of annexin V− cells in the total number of virally infected NK cells was significantly higher than that in mock-infected cells (Fig. 5B). The activation of caspase 3, another biological marker for induction of apoptosis, was also examined in NK cells. Similarly, the percentage of active caspase 3-positive cells was about fourfold higher in virally infected NK cells than that in mock-infected cells (Fig. 5C). In addition, by co-staining active caspase 3 and viral NP protein, we demonstrated that almost all of the apoptotic NK cells were influenza virus-infected cells (Fig. 5D).
We next examined whether UV-inactivated or heat (100°C)-inactivated influenza virus could also kill NK cells. As shown in Fig. 5E, unlike with live virus, the UV-inactivated or heat (100°C)-inactivated virus did not increase NK cell apoptosis compared to that in mock-infected cells, which suggested that only live H1N1 virus can induce the apoptosis of NK cells. We further determined whether caspase 3 inhibitor could preserve NK cell survival. As shown in Fig. 5F, Z-DEVD-FMK significantly reduced NK cell apoptosis induced by influenza virus.

Following the observation that influenza virus induced NK cell apoptosis, we continued to determine NK cytotoxicity. At 24 h postinfection, total NK cells were collected and examined for their killing of K562 cells. As shown in Fig. 6A, influenza virus-infected NK cells showed significantly lower cytotoxicity than mock-infected cells at all E/T ratios. NKp46 is a major lysis receptor for fresh NK cells and contributes to cell cytotoxicity (38, 39). We then examined NKp46 and granule expression in virally infected NK cells. The expression of both surface and intracellular NKp46 and of perforin was remarkably decreased in virally infected NK cells, compared to that in mock-infected cells (Fig. 6B and C). With PI staining to exclude the dead cells, we further examined NKp46 expression in the gated PI-negative cells and also found that NKp46 was significantly decreased in these cells, although the change was minor (Fig. 6D and E). As a control, the expression of MHC class I was not decreased in the PI-negative cells with influenza virus infection (Fig. 6F). The decreased expression of NKp46 was not due to masking by viral hemagglutinin, as the hemagglutinin-binding site on NKp46 was different from that for specific antibody binding, indicated by the fact that both the UV-inactivated virus- and hemagglutinin-protein-bound NK cells exhibited staining of NKp46 by the antibody that was similar to that of untreated cells (data not shown). The minor change in NKp46 expression of infected NK cells might be related to the cells that were undergoing apoptosis but still had complete cell membranes and could not take up PI. Taken together, these results suggest that direct influenza virus infection induced NK cell apoptosis, which would contribute to the reduced NK cell cytotoxicity.

**DISCUSSION**

Viruses and NK cells are in a constant battle. In response to NK cells, many viruses have developed a variety of strategies to evade the activity of these cells, aiming for viral survival and transmission (15, 21, 31, 35). In this study, we demonstrated for the first time that influenza virus could directly infect primary human NK cells via two distinct pathways. Viral infection induced marked NK cell apoptosis. These findings suggest that influenza viruses may have developed a novel strategy to evade the innate immune defense of NK cells, which is likely to facilitate viral transmission and may also contribute to virus pathogenesis.

It is interesting that influenza virus could directly infect and replicate in primary human NK cells, because NK cells are generally regarded as effector cells of innate immunity that kill virally infected cells during acute infection, although direct viral infection of NK cells has been shown for persistent virus infections, such as with herpes simplex virus (43), Epstein-Barr virus (14), human immunodeficiency virus (4), and ectromelia virus (32). Indeed, with innate immune cells, only macrophages were demonstrated to be susceptible to influenza virus infection and to support viral replication, according to our previous data and other studies (5, 33, 44). Here, using different techniques, including quantitative RT-PCR, flow cytometry, and confocal and electron microscopy, we demonstrated that NK cells are susceptible to influenza virus, which causes acute infection. The comparison of virus infections between NK and MDCK cells infected at the same MOI and for the same times
indicated that the efficiency of influenza virus infection of NK cells is lower than that of MDCK cells.

Following virus infection, virus replication can be either productive (i.e., with fully infectious virus being produced and released from the cell) or abortive (with no new infectious virus being produced). In the case of NK cells, we found that influenza viruses undergo abortive replication within NK cells, as evidenced by the increased expression of viral mRNA and internal protein after infection. Such a block in the complete replication of the virus may occur at one of several steps in the cycle of replication, including during viral ribonucleoprotein (vRNP) sorting, transport of subviral components to the cell membrane, assembly, packaging, budding, and final virus release. In addition, apart from the viral components, the host components are also involved in these processes (25). Therefore, any incompatibility between the requirements of the virus and what is available in the host cell might lead to an abortive infection. In fact, as with NK cells, the lymphocytes in general could not support viral replication, although they express viral protein with the help of macrophages (24, 27). In mammals, replication-competent influenza A viruses are generally recovered from the superficial epithelium of the respiratory tract (9), where the viruses replicate and spread. In addition, the enhanced apoptosis of infected cells might also be partly responsible for the abortive infection of NK cells by influenza virus.

Studies have shown that influenza virus infection of target cells is a multiple-step process. Upon binding to sialic acids on the cell surface, influenza virus is internalized into the endosome by receptor-mediated endocytosis. The fusion between viral and endosomal membranes leads to the release of vRNPs into the cytoplasm. vRNPs are then imported into the nucleus for viral replication (18, 36). In this study, the dose-dependent inhibition of viral infection by sialidase indicated that influenza virus infection of NK cells is dependent on the sialic acids. For the infection of different cells, such as MDCK, BS-C-1, and HeLa cells, influenza virus has been reported to exploit clathrin-mediated endocytosis, caveolin-mediated endocytosis, or...
the clathrin- and caveolin-independent pathways, depending on the type of target cells (29, 34, 37). Here, as a new target cell, we determined the endocytic pathways for influenza virus to infect NK cells. With colocalization assay and specific inhibition, we demonstrated that influenza virus infected NK cells by both clathrin- and caveolin-dependent endocytosis rather than by macropinocytosis.

In the host innate immunity, NK cells are key effector cells and can rapidly destroy virus-infected cells during the acute infection, limiting viral replication and transmission. However, in this study, we demonstrated that influenza virus infected NK cells by both clathrin- and caveolin-dependent endocytosis rather than by macropinocytosis.

In the host innate immunity, NK cells are key effector cells and can rapidly destroy virus-infected cells during the acute infection, limiting viral replication and transmission. However, in this study, we demonstrated that influenza virus infected NK cells by both clathrin- and caveolin-dependent endocytosis rather than by macropinocytosis.

In the host innate immunity, NK cells are key effector cells and can rapidly destroy virus-infected cells during the acute infection, limiting viral replication and transmission. However, in this study, we demonstrated that influenza virus infected NK cells by both clathrin- and caveolin-dependent endocytosis rather than by macropinocytosis. In the host innate immunity, NK cells are key effector cells and can rapidly destroy virus-infected cells during the acute infection, limiting viral replication and transmission. However, in this study, we demonstrated that influenza virus infected NK cells by both clathrin- and caveolin-dependent endocytosis rather than by macropinocytosis. In the host innate immunity, NK cells are key effector cells and can rapidly destroy virus-infected cells during the acute infection, limiting viral replication and transmission. However, in this study, we demonstrated that influenza virus infected NK cells by both clathrin- and caveolin-dependent endocytosis rather than by macropinocytosis.

At the early phase of viral infections, NK cells respond to eliminate the invading viruses; however, viruses have evolved a variety of strategies to evade NK cell activity, aiming to maintain a balance between NK cell responses and viral NK escape mechanisms, as each strives for survival (21, 31, 35). The major function of viral NK cell immunoevasion is to allow a high level of viral replication before the onset of the specific immune response (15), which is particularly beneficial for viruses to expand and spread (11, 16). In the case of influenza viral infection, NK cells recognize and kill virus-infected cells (23); in order for replication and subsequent spread, influenza virus needs to develop some mechanisms to combat the NK cell response. Previous study has shown that influenza virus infection increased the levels of binding of two inhibitory receptors to inhibit NK cell cytotoxicity (1). We therefore postulate that our findings here may represent a novel strategy of influenza virus to evade the NK cell innate immune defense by directly infecting NK cells and inducing cell apoptosis. Indeed, among their distinct NK cell immunoevasion mechanisms, many vi-
ruses use induction of NK cell apoptosis as a common strategy (21, 31, 35). This novel evasion strategy has obvious advantages for influenza viruses, allowing it to replicate to the high titers necessary for successful transmission to new hosts before the onset of specific immune responses and to cause clinical illness (15). An intensive understanding of the interaction of influenza viruses and NK cells is important for better understanding influenza pathogenesis and for developing a more effective prophylaxis and treatment of this disease.

ACKNOWLEDGMENTS

This work was supported in part by the General Research Fund, Research Grants Council of Hong Kong (grant HKU 777108 M to W.T.); the Area of Excellence Program on Influenza, supported by the University Grants Committee of the Hong Kong Special Administrative Region, China (project no. AoE/M-12/06) (M.P., Y.-L.L., and W.T.); Seed Funding for Basic Research, University Research Committee, the University of Hong Kong (grant 200611159224 to W.T.); and the Edward Sai-Kim Hotung Pediatric Education and Research Fund (Y.-L.L.).

REFERENCES